Glasses and Glass–Ceramics for Biomedical Applications

The invention of bioactive glasses has undoubtedly represented an important watershed in the history of biomedicine, innovatively revolutionizing the key concept of biomaterials. Although 50 years have passed since the first bioactive glass (45S5 Bioglass ® ), these materials still continue to inspire numerous generations of researchers all over the world, attracted by the promise of numerous possible fields of investigations given by the versatility of glass manufacturing and processing strategies. This allows obtaining final clinical products that are incredibly diverse in terms of chemical characteristics, shape and texture and, therefore, adaptable to different therapeutic needs. The possibility to tune textural properties and degradation rates, perform high-temperature sintering processes without or minimally altering the original properties of the glass, as well as the facile introduction of therapeutically active ions within the composition and the easy surface functionalization led, over year, to the development of multiple pruducts to be used in various clinical fields, including the regeneration of both hard and soft tissues, bacterial/viral infection treatments and development of antitumoral strategies. This chapter opens a wide window on the world of bioactive glasses, starting with the description of their peculiar chemical properties, discussed in relation to the most commonly used manufacturing processes to obtain glass monoliths or particles. Then, an overview on the most common applications of BG-based products will be provided, paying particular attention to porous scaffolds for bone tissue engineering, bioactive coatings, antibacterial glasses and surface functionalization. In conclusion, a comprehensive overview on clinical applications updated to the state of the art will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 128.39 Price includes VAT (France)

Softcover Book EUR 168.79 Price includes VAT (France)

Hardcover Book EUR 168.79 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Bioactive Glasses: Advancing from Micro to Nano and Its Potential Application

Chapter © 2016

Bioactive Glasses: Prospects in Bone Tissue Engineering

Chapter © 2019

A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications

Article 02 December 2022

References

  1. Arvidson, K., et al.: Bone regeneration and stem cells. J. Cell. Mol. Chem. 15, 718–746 (2010) ArticleCASGoogle Scholar
  2. Williams, D.F.: On the mechanism of biocompatibility. Biomaterials 29, 2941–2953 (2008) ArticleCASGoogle Scholar
  3. Campana, V., et al.: Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med. 25, 2445–2461 (2014) ArticleCASGoogle Scholar
  4. Dimitriou, R., Mataliotakis, G.I., Angoules, A.G., Kanakaris, N.K., Giannoudis, P.V.: Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42, S3–S15 (2011) ArticleGoogle Scholar
  5. Henkel, J., et al.: Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res. 3, 216–248 (2013) ArticleCASGoogle Scholar
  6. Hench, L.L.: The story of Bioglass®. J. Mater. Sci. Mater. Med. 17, 967–978 (2006) ArticleCASGoogle Scholar
  7. Wilson, J., Pigott, G., Schoen, F., Hench, L.L.: Toxicology and biocompatibility of bioglasses. J. Biomed. Mater. Res. A 15, 805–817 (1981) ArticleCASGoogle Scholar
  8. Xynos, I., et al.: Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67, 321–329 (2000) ArticleCASGoogle Scholar
  9. Brink, M., Turunen, T., Happponen, R., Yli-Urpo, A.: Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J. Biomed. Mater. Res. 37, 114–121 (1997) ArticleCASGoogle Scholar
  10. Andersson, O.H., Liu, G., Karlsson, K.H., Juhanoja, J.: In vivo behavior of glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 system. J. Mater. Sci. Mater. Med. 1, 219–227 (1990) ArticleCASGoogle Scholar
  11. Knowles, J.C.: Phosphate based glasses for biomedical applications. J. Mater. Chem. 13, 2395–2401 (2003) ArticleCASGoogle Scholar
  12. Hench, L.L.: Bioactive ceramics. Ann. N. Y. Acad. Sci. 523, 54–71 (1988) ArticleCASGoogle Scholar
  13. Pantano, C.G., Clark, A.E., Hench, L.L.: Multilayer corrosion films on bioglass surfaces. J. Am. Ceram. Soc. 57, 412–413 (1974) ArticleCASGoogle Scholar
  14. Hench, L.L., Roki, N., Fenn, M.B.: Bioactive glasses: importance of structure and properties in bone regeneration. J. Mol. Struct. 1073, 24–30 (2014) ArticleCASGoogle Scholar
  15. Salinas, A.J., Vallet-Regí, M.: Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 3, 11116–11131 (2013) ArticleCASGoogle Scholar
  16. Kokubo, T., Ito, S., Sakka, S., Yamamuro, T.: Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J. Mater. Sci. 21, 536–540 (1986) ArticleCASGoogle Scholar
  17. Montazerian, M., Zanotto, E.D.: History and trends of bioactive glass-ceramics. J. Biomed. Mater. Res. A 104, 1231–1249 (2016) ArticleCASGoogle Scholar
  18. Hench, L.L.: Genetic design of bioactive glasses. J. Eur. Ceram. Soc. 29, 1257–1265 (2008) ArticleCASGoogle Scholar
  19. Jell, G., Stevens, M.M.: Gene activation by bioactive glasses. J. Mater. Sci. Mater. Med. 17, 997–1002 (2006) ArticleCASGoogle Scholar
  20. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006) ArticleCASGoogle Scholar
  21. Mizuno, M.: Implants for Surgery: In Vitro Evaluation for Apatite Forming Ability of Implant Materials (ISO ISO/DIS 23317:2014), last reviewed and confirmed in 2020 Google Scholar
  22. Bohner, M., Lemaitre, J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30, 2175–2179 (2009) ArticleCASGoogle Scholar
  23. Macon, A.L.B., et al.: A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J. Mater. Sci. Mater. Med. 26, 115 (2015) ArticleCASGoogle Scholar
  24. Mozafari, M., Banijamali, S., Baino, F., Kargozar, S., Hill, R.G.: Calcium carbonate: adored and ignored in bioactivity assessment. Acta Biomater. 91, 35–47 (2019) ArticleCASGoogle Scholar
  25. Kaur, G., Pickrell, G., Sriranganathan, N., Kumar, V., Homa, D.: Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering. J. Biomed. Mater. Res. 104, 1248–1275 (2015) ArticleCASGoogle Scholar
  26. Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971) ArticleGoogle Scholar
  27. Vedel, E., Arstila, H., Ylanen, H., Hupa, L., Hupa, M.: Predicting physical and chemical properties of bioactive glasses from chemical composition. Part I. Viscosity characteristics. Glass Technol. Eur. J. Glass Sci. Technol. 49, 251–259 (2008) Google Scholar
  28. Li, R., Clarck, A.E., Hench, L.L.: An investigation of bioactive glass powders by sol-gel processing. J. Appl. Biomater. 2, 231–239 (1991) ArticleCASGoogle Scholar
  29. Graham, T.: On the properties of silicic acid and other analogous colloidal substances. J. Chem. Soc. 17, 318–327 (1864) ArticleGoogle Scholar
  30. Flory, P.J.: Principle of Polymer Chemistry. Cornell University Press, Ithaca and London (1953) Google Scholar
  31. Kakihana, M.: Invited review ‘‘sol–gel” preparation of high temperature superconducting oxides. J. Sol-Gel. Sci. Technol. 6, 7–55 (1996) ArticleCASGoogle Scholar
  32. Danks, A.E., Hall, S.R., Schnepp, Z.: The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91 (2016) ArticleCASGoogle Scholar
  33. Baino, F., Fiume, E., Miola, M., Verné, E.: Bioactive sol-gel glasses: processing, properties, and applications. Int. J. Appl. Ceram. Technol. 15, 841–860 (2018) ArticleCASGoogle Scholar
  34. Hench, L.L.: The sol-gel process. Chem. Rev. 90, 33–72 (1990) ArticleCASGoogle Scholar
  35. Kesmez, Ö., et al.: Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings. J. Non-Cryst. Solids 357, 3130–3135 (2011) ArticleCASGoogle Scholar
  36. Arcos, D., Vallet-Regí, M.: Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 6, 2874–2888 (2010) ArticleCASGoogle Scholar
  37. Owens, G.J., et al.: Sol-gel based materials for biomedical applications. Prog. Mater Sci. 77, 1–79 (2016) ArticleCASGoogle Scholar
  38. Doadrio, J.C., et al.: Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem. 16, 462–466 (2006) ArticleCASGoogle Scholar
  39. Wu, C., Zhang, Y., Zhou, Y., Fan, W., Xiao, Y.: A comparative study of mesoporous-glass/silk and nonmesoporous-glass/silk scaffolds: physio-chemistry and in vivo osteogenesis. Acta Biomater. 7, 2229–2236 (2011) ArticleCASGoogle Scholar
  40. Baino, F., Fiume, E.: 3D printing of hierarchical scaffolds based on mesoporous bioactive glasses (MBGs)-fundamentals and applications. Materials (Basel) 13, 1688 (2020) Google Scholar
  41. Lefebvre, L., Gremillardm, L., Chevalier, J., Zenati, R., Bernache-Assolant, D.: Sintering behaviour of 45S5 bioactive glass. Acta Biomater. 4, 1894–1903 (2008) ArticleCASGoogle Scholar
  42. Bellucci, D., et al.: Macroporous bioglass derived scaffolds for bone tissue regeneration. Ceram. Int. 37, 1575–1585 (2011) ArticleCASGoogle Scholar
  43. Arstilla, H., et al.: The sintering range of porous bioactive glasses. Glass Technol. 46, 138–141 (2005) Google Scholar
  44. Zhang, D., Vedel, E., Hupa, L., Aro, H.T.: Predicting physical and chemical properties of bioactive glasses from chemical composition. Part III. In vitro reactivity of glasses. Glass Technol. Eur. J. Glass Sci. Technol. 50, 1–8 (2009) Google Scholar
  45. Tulyaganov, D.U., et al.: Synthesis of glass-ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J. Eur. Ceram. Soc. 26, 1463–1471 (2006) ArticleCASGoogle Scholar
  46. Agathopoulos, S., Tulyaganov, D.U., Ventura, J.M.G., Kannan, S., Saranti, A., Karakassides, M.A.: Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J. Non-Cryst. Solids 352, 322–328 (2006) Google Scholar
  47. Kansal, I., Tulyaganov, D.U., Goel, A., Pascual, M.J., Ferreira, J.M.F.: Structural analysis and thermal behaviour of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics. Acta Biomater. 6, 4380–4388 (2010) ArticleCASGoogle Scholar
  48. Filho, O.P., Latorre, G.P., Hench, L.L.: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 30, 509–514 (1996) ArticleGoogle Scholar
  49. Peitl, O., Dutra, E., Hench, L.L.: Highly bioactive P 2 O 5 ± Na 2 O ± CaO ± SiO 2 glass-ceramics. J. Non-Cryst. Solids 292, 115–126 (2001) ArticleCASGoogle Scholar
  50. Arstila, H., Hupa, L., Karlson, K., Hupa, M.: In vitro bioactivity of partially crystallised glasses. Glass Technol. Eur. J. Glass Sci. Technol. A 48, 196–199 (2007) CASGoogle Scholar
  51. De Castro Juraski, A., Dorion Rodas, A.C., Elsayed, H., Bernardo, E., Oliveira Soares, V., Daguano, J.: The in vitro bioactivity, degradation, and cytotoxicity of polymer-derived wollas-tonite-diopside glass-ceramics. Materials 10, 425 (2017) ArticleCASGoogle Scholar
  52. Fu, Q., Rahaman, M.N., Bal, B.S., Brown, R.F., Day, D.E.: Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 4, 1854–1864 (2008) ArticleCASGoogle Scholar
  53. Liu, X., Rahaman, M.N., Hilmas, G.E., Bal, B.S.: Mechanical properties of bioactive glass (13–93) scaffolds fabricated by robotic deposition for structural bone repair. Acta Biomater. 9, 7025–7034 (2013) ArticleCASGoogle Scholar
  54. Massera, J., Fagerlund, S., Hupa, L., Hupa, M.: Crystallization mechanism of the bioactive glasses, 45S5 and S53P4. J. Am. Ceram. Soc. 95, 603–613 (2012) ArticleCASGoogle Scholar
  55. Baino, F., Fiume, E.: Quantifying the effect of particle size on the crystallization of 45S5 bioactive glass. Mater. Lett. 224, 54–58 (2018) ArticleCASGoogle Scholar
  56. Fiume, E., Migneco, C., Verné, E., Baino, F.: Comparison between bioactive sol-gel and melt-derived glasses/glass-ceramics based on the multicomponent SiO2–P2O5–CaO–MgO–Na2O–K2O system. Materials (Basel) 13, 540 (2020) Google Scholar
  57. Montazerian, M., Zanotto, E.D.: Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res. Part A 105, 619–639 (2017) ArticleCASGoogle Scholar
  58. Nedelec, J.-M., et al.: Materials doping through sol–gel chemistry: a little something can make a big difference. J. Sol-Gel. Sci. Technol. 46, 259–271 (2008) ArticleCASGoogle Scholar
  59. Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015) Google Scholar
  60. Wu, C., Chang, J.: Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release 193, 282–295 (2014) ArticleCASGoogle Scholar
  61. Krajewski, A., Ravaglioli, A., Fabbri, B., Azzoni, C.B.: Doping influence on the interaction between a bioactive glass and a simulated physiological solution: Chemical and EPR tests. J. Mater. Sci. 22, 1228–1234 (1987) ArticleCASGoogle Scholar
  62. Abou Neel, E.A., Knowles, J.C.: Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J. Mater. Sci. Mater. Med. 19, 377–386 (2008) Google Scholar
  63. Yin, H., et al.: Fabrication and characterization of strontium-doped borate-based bioactive glass scaffolds for bone tissue engineering. J. Alloy. Compd. 743, 564–569 (2018) ArticleCASGoogle Scholar
  64. Beattie, J.H., Avenell, A.: Trace element nutrition and bone metabolism. Nutr. Res. Rev. 5, 167–188 (1992) ArticleCASGoogle Scholar
  65. Fiume, E., Barberi, J., Verné, E., Baino, F.: Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J. Funct. Biomater. 9, 24 (2018) ArticleCASGoogle Scholar
  66. Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000) ArticleCASGoogle Scholar
  67. Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005) ArticleCASGoogle Scholar
  68. Chappard, D., Baslé, M.F., Legrand, E., Audran, M.: New laboratory tools in the assessment of bone quality. Osteoporos. Int. 22, 2225–2240 (2011) ArticleCASGoogle Scholar
  69. Gerhardt, L.-C., Boccaccini, A.R.: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel) 3, 3867–3910 (2010) ArticleCASGoogle Scholar
  70. Fu, Q., Saiz, E., Rahaman, M.N., Tomsia, A.P.: Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng., C 31, 1245–1256 (2011) ArticleCASGoogle Scholar
  71. Baino, F., Vitale-Brovarone, C.: Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res. Part A 97, 514–535 (2011) ArticleCASGoogle Scholar
  72. Baino, F., et al.: Processing methods for making porous bioactive glass-based scaffolds—a state-of-the-art review. Int. J. Appl. Ceram. Technol. 16, 1762–1796 (2019) ArticleCASGoogle Scholar
  73. Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001) ArticleCASGoogle Scholar
  74. Yuan, H., de Bruijn, J.D., Zhang, X., Van Blitterswijk, C.A., De Groot, K.: Bone induction by porous glass ceramic made from Bioglass® (45S5). J. Biomed. Mater. Res. 58, 270–276 (2002) ArticleGoogle Scholar
  75. Sepulveda, P., Jones, J.R., Hench, L.L.: Bioactive sol–gel foams for tissue repair. J. Biomed. Mater. Res. 59, 340–348 (2002) ArticleCASGoogle Scholar
  76. Jones, J.R., Lee, P.D., Hench, L.L.: Hierarchical porous materials for tissue engineering. Phil. Trans. R. Soc. A 364, 263–281 (2006) ArticleCASGoogle Scholar
  77. Baino, F., Fiume, E.: Elastic mechanical properties of 45S5-based bioactive glass-ceramic scaffolds. Materials (Basel) 12 (2019) Google Scholar
  78. Baino, F., Pons, E.: Modelling the relationship between tensile strength and porosity in bioceramic scaffolds. Int. J. Appl. Ceram. Technol. 16, 1823–1829 (2019) ArticleCASGoogle Scholar
  79. Kargozar, S., et al.: Synergistic combination of bioactive glasses and polymers for enhanced bone tissue regeneration. Mater Today Proc. 5, 15532–15539 (2018) ArticleCASGoogle Scholar
  80. Bretcanu, O., et al.: Biodegradable polymer coated 45S5 bioglass derived glass-ceramic scaffolds for bone tissue engineering. Glass Technol. Eur. J. Glass Sci. Technol. A 48, 227–234 (2007) CASGoogle Scholar
  81. Rehorek, L., et al.: Response of 45S5 bioglass_foams to tensile loading. Ceram. Int. 39, 8015–8020 (2013) ArticleCASGoogle Scholar
  82. Jones, J.R.: Review of bioactive glass: from hench to hybrids. Acta Biomater. 9, 4457–4486 (2013) ArticleCASGoogle Scholar
  83. Baino, F., Novajra, G., Vitale-Brovarone, C.: Bioceramics and scaffolds: a winning combination for tissue engineering. Front. Bioeng. Biotechnol. 3, 1–17 (2015) ArticleGoogle Scholar
  84. Wu, Z.Y., et al.: Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomater. 7, 1807–1816 (2011) ArticleCASGoogle Scholar
  85. Poologasundarampillai, G., Lee, P.D., Lam, C., Kourkouta, A.M., Jones, J.R.: Compressive strength of bioactive sol-gel glass foam scaffolds. Int. J. Appl. Glas. Sci. 9, 1–9 (2016) Google Scholar
  86. Jones, J.R., Ehrenfried, L.M., Hench, L.L.: Optimizing bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964–973 (2006) ArticleCASGoogle Scholar
  87. Jones, J.R., Ehrenfried, L.M., Saravanapavan, P., Hench, L.L.: Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J. Mater. Sci. Mater. Med. 17, 989–996 (2006) ArticleCASGoogle Scholar
  88. Baino, F., et al.: Fe-doped bioactive glass-derived scaffolds produced by sol-gel foaming. Mater. Lett. 235, 207–211 (2019) ArticleCASGoogle Scholar
  89. Navarro, M., et al.: New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25, 4233–4241 (2004) ArticleCASGoogle Scholar
  90. Fiume, E., et al.: Comprehensive assessment of bioactive glass and glass-ceramic scaffold permeability: experimental measurements by pressure wave drop, modelling and computed tomography-based analysis. Acta Biomater. 119, 405–418 (2021) ArticleCASGoogle Scholar
  91. Boccardi, E., et al.: Characterisation of Bioglass based foams developed via replication of natural marine sponges. Adv. Appl. Ceram. 114, S56–S62 (2015) ArticleCASGoogle Scholar
  92. Fiume, E., Serino, G., Bignardi, C., Verné, E., Baino, F.: Bread-derived bioactive porous scaffolds: an innovative and sustainable approach to bone tissue engineering. Molecules 24, 2954 (2019) ArticleCASGoogle Scholar
  93. Vitale-Brovarone, C., Vernè, E., Bosetti, M., Appendino, P., Cannas, M.: Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes. J. Mater. Sci. Mater. Med. 16, 909–917 (2005) ArticleCASGoogle Scholar
  94. Baino, F., Verné, E., Vitale-Brovarone, C.: 3-D high strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Mater. Sci. Eng., C 29, 2055–2062 (2009) ArticleCASGoogle Scholar
  95. Liang, W., et al.: Bioactive borate glass scaffold for Bone tissue engineering. J. Non-Cryst. Solids 354, 1690–1696 (2008) ArticleCASGoogle Scholar
  96. Fiume, E., Tulyaganov, D., Ubertalli, G., Verné, E., Baino, F.: Dolomite-foamed bioactive silicate scaffolds for bone tissue repair. Materials 13, 628 (2020) ArticleCASGoogle Scholar
  97. Minaberry, Y., Jobbágy, M.: Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying. Chem. Mater. 23, 2327–2332 (2011) ArticleCASGoogle Scholar
  98. Maquet, V., Boccaccini, A.R., Pravata, L., Notingher, I., Jérôme, R.: Porous poly(α‐hydroxyacid)/bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterization. Biomaterials 25, 4185–4194 (2004) Google Scholar
  99. Gmeiner, R., et al.: Additive manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 6, 75–86 (2015) Google Scholar
  100. Liu, J., Hu, H., Li, P., Shuai, C., Peng, S.: Fabrication and characterization of porous 45S5 glass scaffolds via direct selective laser sintering. Mater. Manuf. Processes 28, 610–615 (2013) CASGoogle Scholar
  101. Tesavibul, P., et al.: Processing of 45S5 bioglass® by lithography-based additive manufacturing. Mater. Lett. 41, 81–84 (2012) ArticleCASGoogle Scholar
  102. Bose, S., Vahabzadeh, S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16, 496–504 (2013) ArticleCASGoogle Scholar
  103. Barberi, J., et al.: Robocasting of SiO2-based bioactive glass scaffolds with porosity gradient for bone regeneration and potential load-bearing applications. Materials (Basel) 12 (2019) Google Scholar
  104. Yun, H.S., Kim, S.E., Park, E.K.: Bioactive glass-poly(epsilon-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Mater. Sci. Eng., C 31, 198–205 (2011) ArticleCASGoogle Scholar
  105. McEntire, B., Bal, B., Rahaman, M., Chevalier, J., Pezzotti, G.: Ceramics and ceramic coatings in orthopaedics. J. Eur. Ceram. Soc. 35, 4327–4369 (2015) ArticleCASGoogle Scholar
  106. Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biomed. Mater. Res. Part A 58, 570–592 (2001) ArticleCASGoogle Scholar
  107. Sola, A., Bellucci, D., Cannillo, V., Cattini, A.: Bioactive glass coatings: a review. Surf. Eng. 27, 560–572 (2011) ArticleCASGoogle Scholar
  108. Lopez-Esteban, S., et al.: Bioactive glass coatings for orthopedic metallic implants. J. Eur. Ceram. Soc. 23, 2921–2930 (2003) ArticleCASGoogle Scholar
  109. Verne, E., Brovarone, C.V., Moisescu, C.: Glazing of alumina by a fluoroapatite-containing glass-ceramic. J. Mater. Sci. 40, 1209–1215 (2005) Google Scholar
  110. Bosetti, M., et al.: Fluoroapatite glass-ceramic coating on alumina: surface behaviour with biological fluids. J. Biomed. Mater. Res. 66A, 615–621 (2003) ArticleCASGoogle Scholar
  111. Verne, E., Fernandez-Valles, C., Brovarone, C.V., Spriano, S., Moisescu, C.: Double-layer glass-ceramic coatings on Ti6Al4V for dental implants. J. Eur. Ceram. Soc. 24, 2699–2705 (2004) Google Scholar
  112. Verné, E., Bona, E., Angelini, E., Rosalbino, F., Appendino, P.: Correlation between microstructure and properties of biocomposite coatings. J. Eur. Ceram. Soc. 22, 2315–2323 (2002) ArticleGoogle Scholar
  113. Vernè, E., et al.: Fluoroapatite glass-ceramic coatings on alumina: structural, mechanical and biological characterisation. Biomaterials 23, 3395–3403 (2002) ArticleGoogle Scholar
  114. Ferraris, M., et al.: Coatings on zirconia for medical applications. Biomaterials 21, 765–773 (2000) ArticleCASGoogle Scholar
  115. Verné, E., Ferraris, M., Jana, C., Paracchini, L.: Bioverit®I base glass/Ti par-ticulate biocomposite: “in situ” vacuum plasma spray deposition. J. Eur. Ceram. Soc. 20, 473–479 (2000) ArticleGoogle Scholar
  116. Verné, E., et al.: Sintering and plasma spray deposition of bioactive glass-matrix composites for biomedical applications. J. Eur. Ceramic Soc. 18, 363–372 (1998) Google Scholar
  117. Alonso-Barrio, J.A., et al.: Bioglass-coated femoral stem. J. Bone Joint Surg. 86-B, 138 (2004) Google Scholar
  118. Gomez-Vega, J.M., et al.: Novel bioactive functionally graded coatings on Ti6Al4V. Adv. Mater. 12, 894–898 (2000) ArticleCASGoogle Scholar
  119. Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I.: Electrophoretic deposition of biomaterials. J. Royal Soc. Interf. 7 (2010) Google Scholar
  120. Baino, F., et al.: Novel antibacterial ocular prostheses: proof of concept and physico-chemical characterization. Mater. Sci. Eng., C 60, 467–474 (2016) ArticleCASGoogle Scholar
  121. Moskalewicz, T., Seuss, S., Boccaccini, A.R.: Microstructure and properties of composite poly-etheretherketone/Bioglass® coatings deposited on Ti-6Al-7Nb alloy for medical applications. Appl. Surf. Sci. 273, 62–67 (2013) ArticleCASGoogle Scholar
  122. Seuss, S., Heinloth, M., Boccaccini, A.R.: Development of bioactive composite coatings based on combination of PEEK, bioactive glass and ag nanoparticles with antimicrobial properties. Surf. Coat. Technol. 301, 100–105 (2016) ArticleCASGoogle Scholar
  123. Baino, F., Verné, E.: Glass-based coatings on biomedical implants: a state-of-the-art review. Biomed. Glass. 3, 1–17 (2017) ArticleGoogle Scholar
  124. Ferraris, M., et al.: Chemical, mechanical, and antibacterial properties of silver nanocluster–silica composite coatings obtained by sputtering. Adv. Eng. Mater. 12, B276-282 (2010) ArticleCASGoogle Scholar
  125. Ferraris, M., Chiaretta, D., Fokine, M., Miola, M., Verné, E.: Pellicole antibatteriche ottenute da sputtering e procedimento per conferire proprietà antibatteriche ad un substrato, TO2008A000098 (2008) Google Scholar
  126. Ferraris, M., Balagna, C., Perero, S.: Method for the application of an antiviral coating to a substrate and relative coating, WO2019/082001 (2019) Google Scholar
  127. Muzio, G., et al.: Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer. J. Biomed. Mater. Res. B Appl. Biomater. 105, 1586–1593 (2017) ArticleCASGoogle Scholar
  128. Irfan, M., et al.: Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose 24, 2331–2345 (2017) ArticleCASGoogle Scholar
  129. Balagna, C., et al.: Characterization of antibacterial silver nanocluster/silica composite coating on high performance Kevlar® textile. Surf. Coat. Technol. 321, 438–447 (2017) ArticleCASGoogle Scholar
  130. Miola, M., et al.: Silver nanocluster-silica composite antibacterial coatings for materials to be used in mobile telephones. Appl. Surf. Sci. 313, 107–115 (2014) ArticleCASGoogle Scholar
  131. Balagna, C., et al.: Antipathogen nanostructured coating for air filters. Appl. Surf. Sci. 508, 145283 (2020) Google Scholar
  132. Balagna, C., et al.: Antibacterial coating on polymer for space application. Mater. Chem. Phys. 135, 714–722 (2012) ArticleCASGoogle Scholar
  133. Balagna, C., Francese, R., Perero, S., Lembo, D., Ferraris, M.: Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters. Surf. Coat. Technol. 409, 126873 (2021) Google Scholar
  134. Balagna, C., Perero, S., Percivalle, E., Vecchio Nepita, E., Ferraris, M.: Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram. 1, 100006 (2020) Google Scholar
  135. Verné, E., Vitale-Brovarone, C., Robiglio, I., Baino, F.: Single-Piece Ceramic Prosthesis Elements, EP2152328A2 (2008) Google Scholar
  136. Baino, F., Vitale-Brovarone, C.: Feasibility of glass-ceramic coatings on alumina prosthetic implants by airbrush spraying method. Ceram. Int. 41, 2150–2159 (2015) ArticleCASGoogle Scholar
  137. Baino, F., et al.: Novel full-ceramic monoblock acetabular cup with a bioactive tra-becular coating: design. Fabr. Charact. Ceram. Int. 42, 6833–6845 (2016) ArticleCASGoogle Scholar
  138. Baino, F., Vitale-Brovarone, C.: Trabecular coating on curved alumina substrates using a novel bio-active and strong glass-ceramic. Biomed. Glass. 1, 31–40 (2015) Google Scholar
  139. Baino, F., Montealegre, M.A., Orlygsson, G., Novajra, G., Vitale-Brovarone, C.: Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: a proof-of-concept study. J. Mater. Sci. 52, 9115–9128 (2017) ArticleCASGoogle Scholar
  140. Cevc, G., Blume, G.: Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced ther-apeutic dosage. Biochem. Biophys. Acta. 1663, 61–73 (2004) ArticleCASGoogle Scholar
  141. Hum, J., Boccaccini, A.R.: Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J. Mater. Sci. Mater. Med. 23, 2317–2333 (2012) ArticleCASGoogle Scholar
  142. Arcos, D., Vallet-Regí, M.: Bioceramics for drug delivery. Acta Mater. 61, 890–911 (2013) ArticleCASGoogle Scholar
  143. Yan, X., Yu, C., Zhou, X., Tang, J., Zhao, D.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angewandte Chemie Int. Ed. Engl. 43, 5980–5984 (2004) ArticleCASGoogle Scholar
  144. Migneco, C., Fiume, E., Verné, E., Baino, F.: A Guided walk through the world of mesoporous bioactive glasses (MBGs): fundamentals, processing, and applications. Nanomaterials 10, 2571 (2020) ArticleCASGoogle Scholar
  145. Izquierdo-Barba, I., Vallet-Regi, M.: Mesoporous bioactive glasses: relevance of their porous structure compared to that of classical bioglasses. Biomed. Glass. 1, 140–150 (2015) Google Scholar
  146. Wu, C., et al.: Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. J. Biomed. Mater. Res. A 95, 476–485 (2010) ArticleCASGoogle Scholar
  147. Zhao, L.Z., et al.: Mesoporous bioactive glasses for controlled drug release. Micropor. Mesop. Mater. 109, 210–215 (2008) ArticleCASGoogle Scholar
  148. Xia, W., Chang, J.: Well-ordered mesoporous bioactive glasses (MBG): a promising bioac-tive drug delivery system. J. Control. Release 110, 522–530 (2006) ArticleCASGoogle Scholar
  149. Zhao, Y.F., Loo, S.C., Chen, Y.Z., Boey, F.Y., Ma, J.: In situ SAXRD study of sol-gel induced well-ordered mesoporous bioglasses for drug delivery. J. Biomed. Mater. Res. A 85, 1032–1042 (2008) ArticleCASGoogle Scholar
  150. López-Noriega, A., et al.: Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem. Mater. 18, 3137–3144 (2006) ArticleCASGoogle Scholar
  151. Baino, F., Fiorilli, S., Vitale-Brovarone, C.: Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater. 42, 18–32 (2016) ArticleCASGoogle Scholar
  152. Kargozar, S., Montazerian, M., Hamzehlou, S., Kim, H.W., Baino, F.: Mesoporous bioactive glasses: promising platforms for antibacterial strategies. Acta Biomater. 81, 1–19 (2018) ArticleCASGoogle Scholar
  153. Ahmed, A.A., Ali, A.A., Mahmoud, D.A.R., El-Fiqi, A.M.: Preparation and characterization of antibacterial P2O5–CaO–Na2O–Ag2O glasses. J. Biomed. Mater. Res. Part A 98A, 132–142 (2011) ArticleCASGoogle Scholar
  154. Bellantone, M., Coleman, N.J., Hench, L.L.: A novel sol-gel derived bioactive glass featuring antibacterial properties. Key Eng. Mater. 192–195, 597–600 (2001) Google Scholar
  155. Mulligan, A.M., Wilson, M., Knowles, J.C.: The effect of increasing copper 770 content in phosphate-based glasses on biofilms of Streptococcus sanguis, 771. Biomaterials 24, 1797–1807 (2003) ArticleCASGoogle Scholar
  156. Schuhladen, K., et al.: Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. Biomater. Sci. 8, 2143 (2020) ArticleCASGoogle Scholar
  157. Vernè, E., et al.: Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. J. Mater. Sci. Mater. Med. 20, 2935–2942 (2009) Google Scholar
  158. Miola, M., Vernè, E.: Bioactive and antibacterial glass powders doped with copper by ion-exchange in aqueous solutions. Materials 9, 405 (2016) ArticleCASGoogle Scholar
  159. Di Nunzio, S., et al.: Silver containing bioactive glasses prepared by molten salt ion-exchange. J. Eur. Ceram. Soc. 24, 2935–2942 (2004) ArticleCASGoogle Scholar
  160. Bellantone, M., Williams, H.D., Hench, L.L.: Broad-spectrum bactericidal activity of Ag (2)O-doped bioactive glass. Antimicrob. Agents Chemother. 46, 1940–1945 (2002) ArticleCASGoogle Scholar
  161. Diba, M., Boccaccini, A.R.: Silver‐containing bioactive glasses for tissue engineering applications. In: Baltzer, N., Copponnex, T. (eds.) Precious Metals for Biomedical Applications, pp. 177–211. Woodhead Publishing (2014) Google Scholar
  162. Neel, E.A., Ahmed, I., Pratten, J., Nazhat, S.N., Knowles, J.C.: Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26, 2247–2254 (2005) ArticleCASGoogle Scholar
  163. Baghbani, F., Moztarzadeh, F., Hajibaki, L., Mozafari, M.: Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2–CaO–P2O5–MgO–ZnO): in vitro study. Bull. Mater. Sci. 36, 1339–1346 (2013) ArticleCASGoogle Scholar
  164. Valappil, S.P., et al.: Role of gallium and silver from phosphate‐based glasses on in vitro dual species oral biofilm models of Porphyromonas gingivalis and Streptococcus gordonii. Acta Biomater. 8, 1957–1965 (2012) Google Scholar
  165. Sakthi, P.S., et al.: In vitro bioactivity and antibacterial properties of bismuth oxide modified bioactive glasses. J. Mater. Res. 33, 178–190 (2018) ArticleCASGoogle Scholar
  166. Liu, L., Pushalkar, S., Saxena, D., LeGeros, R.Z., Zhang, Y.: Antibacterial property expressed by a novel calcium phosphate glass. J. Biomed. Mater. Res. B Appl. Biomater. 102, 423–429 (2014) ArticleCASGoogle Scholar
  167. Marta, M., et al.: Tellurium: a new active element for innovative multifunctional bioactive glasses. Mater. Sci. Eng. C 123, 111957 (2021) Google Scholar
  168. Gruian, K.M.C., et al.: Addressing the optimal silver content in bioactive glass systems in terms of BSA adsorption. J. Mater. Chem. B 2, 5799–5808 (2014) ArticleCASGoogle Scholar
  169. Verné, E., et al.: Synthesis and characterisation of bioactive and antibacterial glass–ceramic part 1—microstructure, properties and biological behaviour. Adv. Appl. Ceram. 107, 234–244 (2008) ArticleCASGoogle Scholar
  170. Vitale-Brovarone, C., Miola, M., Balagna, C., Verné, E.: 3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chem. Eng. J. 137, 129–136 (2008) ArticleCASGoogle Scholar
  171. Gholipourmalekabadi, M., et al.: Detection and qualification of optimum antibacterial and cytotoxic activities of silver-doped bioactive glasses. ET Nanobiotechnol. 9, 209–214 (2015) ArticleGoogle Scholar
  172. Wilkinson, H.N., Iveson, S., Catherall, P., Hardman, M.J.: A novel silver bioactive glass elicits antimicrobial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus in an ex vivo skin wound biofilm model. Front. Microbiol. 9, 1450 (2018) ArticleGoogle Scholar
  173. Miola, M., et al.: Antibiotic-free composite bone cements with antibacterial and bioactive proper-ties. A preliminary study. Mater. Sci. Eng. C 43, 65–75 (2014) Google Scholar
  174. Miola, M., Verné, E., Vitale-Brovarone, C., Baino, F.: Antibacterial bioglass-derived scaffolds: innovative synthesis approach and characterization. Int. J. Appl. Glas. Sci. 7, 238–247 (2016) ArticleCASGoogle Scholar
  175. Miola, M., Fucale, G., Maina, G., Verné, E.: Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. J. Mater. Sci. 52, 5133–5146 (2017) ArticleCASGoogle Scholar
  176. Miola, M., Fucale, G., Maina, G., Verné, E.: Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles. Biomed. Mater. 10, 055041 (2015) Google Scholar
  177. Hosny, A.E.-D.M., Rasmy, S.A., Aboul-Magd, D.S., Kashef, M.T., El-Bazza, Z.E.: The increasing threat of silver-resistance in clinical isolates from wounds and burns. Inf. Drug Resist. 12, 1985–2001 (2019) Google Scholar
  178. Aina, V., et al.: Influence of the chemical composition on nature and activity of the surface layer of Zn-substituted sol-gel (Bioactive) glasses. J. Phys. Chem. C 115, 2196–2210 (2011) ArticleCASGoogle Scholar
  179. Raffi, M., et al.: Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 60, 75–80 (2010) ArticleCASGoogle Scholar
  180. Goh, Y.F., et al.: Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Appl. Glass Sci. 5, 255–266 (2014) ArticleCASGoogle Scholar
  181. Srivastava, A.K., Pyare, R.: Characterization of CuO substituted 45S5 bioactive glasses and glass-ceramics. Int. J. Sci. Technol. Res. 1, 28–41 (2012) Google Scholar
  182. Miola, M., et al.: Copper-doped bioactive glass as filler for PMMA-based bone cements: morphological, mechanical, reactivity, and preliminary antibacterial characterization. Materials (Basel) 11, 961 (2018) Google Scholar
  183. Esteban-Tejeda, L., et al.: Calcium and zinc containing bactericidal glass coatings for biomedical metallic substrates. Int. J. Mol. Sci. 15, 13030–13044 (2014) ArticleCASGoogle Scholar
  184. Balasubramanian, P., Strobel, L.A., Kneser, U., Boccaccini, A.R.: Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomed. Glass. 1, 51–69 (2015) Google Scholar
  185. Shahrbabak, M.S.N., Sharifianjazi, F., Rahban, D., Salimi, A.: A comparative investigation on bioactivity and antibacterial properties of sol-gel derived 58S bioactive glass substituted by Ag and Zn. Silicon 11, 2741–2751 (2019) ArticleCASGoogle Scholar
  186. Grandi, S., et al.: Bone reconstruction: Au nanocomposite bioglasses with antibacterial properties. Int. J. Artif. Organs 34, 920–928 (2011) ArticleCASGoogle Scholar
  187. Vulpoi, A., et al.: Bioactivity and protein attachment onto bioactive glasses containing silver nanoparticles. J. Biomed. Mater. Res. A 100, 1179–1186 (2012) ArticleCASGoogle Scholar
  188. Ferraris, S., et al.: In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Appl. Surf. Sci. 396, 461–470 (2017) ArticleCASGoogle Scholar
  189. Miola, M., Bertone, E., Vernè, E.: In situ chemical and physical reduction of copper on bioactive glass surface. Appl. Surf. Sci. 495, 143559 (2019) Google Scholar
  190. Hamad, A., Khashan, K.S., Hadi, A.: Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. 30, 4811–4828 (2020) ArticleCASGoogle Scholar
  191. Miola, M., Vitale-Brovarone, C., Mattu, C., Verné, E.: Antibiotic loading on bioactive glasses and glass-ceramics: an approach to surface modification. J. Biomater. Appl. 28, 308–319 (2012) ArticleCASGoogle Scholar
  192. Arcos, D., Lopez-Noriega, A., Ruiz-Hernandez, E., Terasaki, O., Val-let-Regi, M.: Ordered mesoporous microspheres for bone grafting and drug delivery. Chem. Mater. 21, 1000–1009 (2009) ArticleCASGoogle Scholar
  193. Anand, A., Das, P., Nandi, S.K., Kundua, B.: Development of antibiotic loaded mesoporous bioactive glass and its drug release kinetics. Ceram. Int. 46, 5477–5483 (2020) ArticleCASGoogle Scholar
  194. Cheng, T., Qu, H., Zhang, G., Zhang, X.: Osteogenic and antibacterial properties of vancomycin-laden mesoporous bio-glass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif. Cells, Nanomed. Biotechnol. 46, 1935–1947 (2018) CASGoogle Scholar
  195. Bortuzzo, K.Z.J.A., et al.: Bio-templated bioactive glass particles with hierarchical macro–nano porous structure and drug delivery capability. Colloids Surf. B Biointerf. 135, 825–832 (2015) ArticleCASGoogle Scholar
  196. Zhang, X., et al.: Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31, 5865–5874 (2010) ArticleCASGoogle Scholar
  197. Drago, L., Toscano, M., Bottagisio, M.: Recent evidence on bioactive glass antimicrobial and antibiofilm activity: a mini-review. Materials 11, 326 (2018) ArticleCASGoogle Scholar
  198. Gorustovich, J., Rivadeneira, A.: Bioactive glasses as delivery systems for antimicrobial agents. J. Appl. Microbiol. 122, 1424–1437 (2017) ArticleGoogle Scholar
  199. Hu, S., Chang, J., Liu, M., Ning, C.: Study on antibacterial effect of 45S5 Bioglass. J. Mater. Sci. Mater. Med. 20, 281–286 (2009) ArticleCASGoogle Scholar
  200. Rivadeneira, J., Audisio, C.M., Boccaccini, A.R., Gorustovich, A.A.: In vitro antistaphylococcal effects of a novel 45S5 bioglass/agar-gelatin biocomposite films. J. Appl. Microbiol. 115, 604–612 (2013) ArticleCASGoogle Scholar
  201. Drago, L., et al.: In vitro antibiofilm activity of bioactive glass S53P4. Future Microbiol. 9, 593–601 (2014) ArticleCASGoogle Scholar
  202. Saima Begum, J.W.E., Worthingtonand, T., Martin, R.A.: The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 Bio-glass. Biomed. Mater. 11, 015006 (2016) Google Scholar
  203. Xie, Z.P., et al.: Failure of particulate bioglass to prevent experimental staphylococcal infection of open tibial fractures. J. Antimicrob. Chemother. 62, 1162–1163 (2008) ArticleCASGoogle Scholar
  204. Verné, E., Ferraris, S.: Surface functionalization of bioactive glasses: reactive groups, biomolecules and drugs on bioactive surfaces for smart and functional biomaterials. In: Boccaccini, l.R., Brauer, D.S., Hupa, L. (eds.) Bioactive Glasses: Fundamentals, Technology and Applications, pp. 221–235. Royal Society of Chemistry (2017) Google Scholar
  205. Cao, W., Hench, L.L.: Bioactive materials. Ceram. Int. 22, 493–507 (1996) ArticleCASGoogle Scholar
  206. Verné, E., Vitale-Brovarone, C., Bui, E., Bianchi, C.L., Boccaccini, A.R.: Surface functionalization of bioactive glasses. J. Biomed. Mater. Res. 90A, 981–992 (2009) ArticleCASGoogle Scholar
  207. Kargozar, S., et al.: Functionalization and surface modifications of bioactive glasses (BGs): tailoring of the biological response working on the outermost surface layer. Materials (Basel) 12, 3696 (2019) Google Scholar
  208. Schuhladen, K., Roether, J.A., Boccaccini, A.R.: Bioactive glasses meet phytotherapeutics: the potential of natural herbal medicines to extend the functionality of bioactive glasses. Biomaterials 217, 119288 (2019) Google Scholar
  209. Chen, Q.Z., Rezwan, K., Armitage, D., Nazhat, S.N., Boccaccini, A.R.: The surface functionalization of 45S5 Bioglassr-based glass-ceramic scaffolds and its impact on bioactivity. J. Mater. Sci. Mater. Med. 17, 979–987 (2006) ArticleCASGoogle Scholar
  210. Verné, E., et al.: Surface functionalization of 3D glass–ceramic porous scaffolds for enhanced miner-alization in vitro. Appl. Surf. Sci. 271, 412–420 (2013) ArticleCASGoogle Scholar
  211. Verné, E., et al.: Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomater. 6, 229–240 (2010) ArticleCASGoogle Scholar
  212. Stanić, S.: Variation in properties of bioactive glasses after surface modification. In: Clinical Applications of Biomaterials, pp. 35–63. Springer, Cham (2017) Google Scholar
  213. Sun, J., et al.: Functionalization and bioactivity in vitro of mesoporous bioactive glasses. J. Non-Cryst. Solids 354, 3799–3805 (2008) ArticleCASGoogle Scholar
  214. Gruian, C., Vanea, E., Simon, S., Simon, V.: FTIR and XPS studies of protein adsorption onto functionalized bioactive glass. Biochem. Biophys. Acta. 1824, 873 (2012) CASGoogle Scholar
  215. Toworfe, G.K., et al.: Effect of functional end groups of silane self-assembled monolayer surfaces on apa-tite formation, fibronectin adsorption and osteoblast cell function. J. Tissue Eng. Regen. Med. 3, 26–36 (2009) ArticleCASGoogle Scholar
  216. Magyari, K., et al.: Bioactivity evolution of the surface functionalized bioactive glasses. J. Biomed. Mater. Res. Part B 103, 261–272 (2015) ArticleCASGoogle Scholar
  217. Schickle, K., et al.: Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2. J. Mater. Sci. - Mater. Med. 22, 763–771 (2011) ArticleCASGoogle Scholar
  218. Massera, J., Mishra, A., Guastella, S., Ferraris, S., Verné, E.: Surface functionalization of phosphate-based bioactive glasses with 3-aminopropyltriethoxysilane (APTS). Biomed. Glass. 2, 51–62 (2016) Google Scholar
  219. Ferraris, S., Nommeots-Nomm, A., Spriano, S., Vernè, E., Massera, J.: Surface reactivity and silanization ability of borosilicate and Mg-Sr-based bioactive glasses. Appl. Surf. Sci. 475, 43–55 (2019) ArticleCASGoogle Scholar
  220. Zhang, Y., Luan, J., Jiang, S., Zhou, X., Li, M.: The effect of amino-functionalized mesoporous bioactive glass on MC3T3-E1 cells in vitro stimulation. Composites B 172, 397–405 (2019) ArticleCASGoogle Scholar
  221. Höhn, S., et al.: Effects of medium pH and preconditioning treatment on protein adsorption on 45S5 bioactive glass surfaces. Adv. Mater. Interf. 7, 2000420 (2020) ArticleCASGoogle Scholar
  222. Lou, T., Bai, X., He, X., Yuan, C.: Antifouling performance analysis of peptide-modified glass microstructural surfaces. Appl. Surf. Sci. 541, 148384 (2021) Google Scholar
  223. Zhang, X., et al.: Ultrahigh adhesion force between silica-binding peptide SB7 and glass substrate studied by single-molecule force spectroscopy and molecular dynamic simulation. Front. Chem. 8, 600918 (2020) Google Scholar
  224. Zhang, L., et al.: Facile surface modification of glass with zwitterionic polymers for improving the blood compatibility. Mater. Res. Exp. 5, 065401 (2018) Google Scholar
  225. Terpilowski, K., Rymuszka, D.: Surface properties of glass plates activated by air, oxygen, nitrogen and argon plasma. Glass Phys. Chem. 42, 535–541 (2016) ArticleCASGoogle Scholar
  226. Lopez-Noriega, A., Arcos, D., Vallet-Regí, M.: Functionalizing mesoporous bioglasses for long‐term anti‐osteoporotic drug delivery. Chem. Eur. J. 16, 10879–10886 (2010) Google Scholar
  227. Leonor, I.B., Alves, C.M., Azevedo, H.S., Reis, R.L.: Effects of protein incorporation on calcium phosphate coating. Mater. Sci. Eng., C 29, 913–918 (2009) ArticleCASGoogle Scholar
  228. Chen, Q.Z., et al.: Collagen release kinetics of surface functionalized 45S5 Bioglass®-based porous scaffolds. J. Biomed. Mater. Res. Part A 86A, 987–995 (2007) ArticleCASGoogle Scholar
  229. Zhang, X., Ferraris, S., Prenesti, E., Vernè, E.: Surface functionalization of bioactive glasses with natural molecules of biological significance, part I: gallic acid as model molecule. Appl. Surf. Sci. 287, 329–340 (2013) ArticleCASGoogle Scholar
  230. Ferraris, S., et al.: Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic. J. Non-Cryst. Solids 432, 167–175 (2016) ArticleCASGoogle Scholar
  231. Corazzari, I., et al.: Gallic acid grafting modulates the oxidative potential of ferrimagnetic bioactive glass-ceramic SC-45. Colloids Surf. B Biointerf. 148, 592–599 (2016) ArticleCASGoogle Scholar
  232. Cazzola, M., et al.: Bioactive glasses functionalized with polyphenols: in vitro interactions with healthy and cancerous osteoblast cells. J. Mater. Sci. 52, 9211–9223 (2017) ArticleCASGoogle Scholar
  233. Cazzola, M., et al.: Bioactive glass coupling with natural polyphenols: surface modification, bioactivity and anti-oxidant ability. Appl. Surf. Sci. 367, 237–248 (2016) ArticleCASGoogle Scholar
  234. Zhang, X., Ferraris, S., Prenesti, E., Vernè, E.: Surface functionalization of bioactive glasses with natural molecules of biological significance, part II: grafting of polyphenols extracted from grape skin. Appl. Surf. Sci. 287, 341–348 (2013) ArticleCASGoogle Scholar
  235. Dziadek, M., Dziadek, K., Zagrajczuk, B., Menaszek, E., Cholewa-Kowalska, K.: Poly (“-caprolactone)/bioactive glass composites enriched with polyphenols extract-ed from sage (Salvia officinalis L.). Mater. Lett. 183, 386–390 (2016) Google Scholar
  236. Sayed Abdelgeliel, A., et al.: Surface functionalization of bioactive glasses with polyphenols from Padina pavonica Algae and in situ reduction of silver ions: physico-chemical characterization and biological response. Coatings 9, 394 (2019) ArticleCASGoogle Scholar
  237. Ferlenda, G., et al.: Surface functionalization of a silica-based bioactive glass with compounds from Rosa canina bud extracts. ACS Biomater. Sci. Eng. 7, 96–104 (2021) ArticleCASGoogle Scholar
  238. Malavasi, G., et al.: The role of coordination chemistry in the development of innovative gallium-based bioceramics: the case of curcumin. J. Mater. Chem. 21, 5027–5037 (2011) ArticleCASGoogle Scholar
  239. Verne, E., et al.: Surface activation of a ferrimagnetic glass-ceramic for antineoplastic drugs graftingy. Adv. Eng. Mater. 12, B309–B319 (2010) Google Scholar
  240. Zhu, M., Zhang, J., Tao, C., He, X., Zhu, Y.: Design of mesoporous bioactive glass/hydroxyapatite composites for controllable co-delivery of chemotherapeutic drugs and proteins. Mater. Lett. 115, 194–197 (2014) ArticleCASGoogle Scholar
  241. Boanini, E., et al.: Alendronate functionalized mesoporous bioactive glass nanospheres. Materials (Basel) 9, 135 (2016) Google Scholar
  242. Aina, V., et al.: New formulation of functionalized bioactive glasses to be used as carriers for the development of pH-stimuli responsive biomaterials for bone diseases. Langmuir 30, 4703–4715 (2014) ArticleCASGoogle Scholar
  243. Ferraris, S., et al.: Effects of sterilization and storage on the properties of ALP-grafted biomaterials for prosthetic and bone tissue engineering applications. Biomed. Mater. 7, 054102 (2012) Google Scholar
  244. Jones, J.R., Brauer, D.S., Greenspan, D.C.: Bioglass and bioactive glasses and their impact on healthcare. Int. J. Appl. Glas. Sci. 7, 423–432 (2016) ArticleCASGoogle Scholar
  245. Merwin, G.E.: Bioglass middle ear prosthesis: preliminary report. Ann. Otol. Rhinol. Laryngol. 95, 78–82 (1986) ArticleCASGoogle Scholar
  246. Bahmad, F., Merchant, S.N.: Histopathology of ossicular grafts and implants in chronic otitis media. Ann. Otol. Rhinol. Laryngol. 116, 181–191 (2007) ArticleGoogle Scholar
  247. Downing, M., et al.: A bone-anchored percutaneous connector system for neural prosthetic applications. Ear Nose Throat J. 76, 328–332 (1997) ArticleCASGoogle Scholar
  248. Stanley, H., Hall, M., Clark, A.: Using 45S5 bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. Int. J. Oral Maxillofac. Implants 12, 1–19 (1997) Google Scholar
  249. Baino, F.: Ceramics for bone replacement: commercial and clinical use. In: Palmero, P., Cambier, F., De Barra, E. (eds.) Advances in Ceramic Biomaterials, pp. 249–278. Woodhead Publishing, Elsevier (2017) Google Scholar
  250. Chen, Q.Z., Thompson, I.D., Boccaccini, A.R.: 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27, 2414–2425 (2006) ArticleCASGoogle Scholar
  251. Gillam, D.G., Tang, J.Y., Mordan, N.J., Newman, H.N.: The effects of a novel Bioglass® dentifrice on dentine sensitivity: a scanning electron microscopy investigation. J. Oral Rehabil. 29, 305–313 (2002) ArticleCASGoogle Scholar
  252. Vahid Golpayegani, M., Sohrabi, A., Biria, M., Ansari, G.: Remineralization effect of topical NovaMin versus sodium fluoride (1.1%) on caries-like lesions in permanent teeth. J. Dentistry (Tehran) 9, 68–75 (2012) Google Scholar
  253. Banerjee, A., Hajatdoost-Sani, M., Farrell, S., Thompson, I.: A clinical evaluation and comparison of bioactive glass and sodium bicarbonate air-polishing powders. J. Dent. 38, 475–479 (2010) ArticleCASGoogle Scholar
  254. Kargozar, S., Baino, F., Hamzehlou, S., Hill, R.G., Mozafari. M.: Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol. 36, 430–444 (2018) Google Scholar
  255. Wray, P.: Cotton candy’that heals. Am. Ceram. Soc. Bull. 90, 24–31 (2011) CASGoogle Scholar
  256. Ma, X., Schou, K.R., Maloney-Schou, M., Harwin, F.M., Ng, J.D.: The porous polyethylene/bioglass spherical orbital implant: a retrospective study of 170 cases. Ophthalmic Plast. Reconstr. Surg. 27, 21–27 (2011) ArticleCASGoogle Scholar
  257. Miola, M., et al.: Glass-ceramics for cancer treatment: so close, or yet so far? Acta Biomater. 83, 55–70 (2019) ArticleCASGoogle Scholar
  258. Velasco, M.V., Souza, M.T., Crovace, M.C., Aparecido de Oliveira, A.J.A., Zanotto, E.D.: Bioactive magnetic glass-ceramics for cancer treatment. Biomed. Glass. 5, 148–177 (2019) Google Scholar
  259. Cochis, A., Miola, M., Bretcanu, O., Rimondini, L., Verné, E.: Magnetic bioactive glass ceramics for bone healing and hyperthermic treatment of solid tumors. In: Tiwari, A., Iyer, P. K., Kumar, V., Swart, H. (eds.) Advanced Magnetic and Optical Materials, pp. 81–112. Scrivener Publishing LLC (2016) Google Scholar
  260. Miola, M., et al.: Composite bone cements for hyperthermia: modeling and characterization of magnetic, calorimetric and in vitro heating properties. Ceram. Int. 43, 4831–4840 (2017) ArticleCASGoogle Scholar
  261. Bretcanu, O., et al.: In vitro biocompatibility of a ferrimagnetic glass-ceramic for hyperthermia application. Mater. Sci. Eng., C 73, 778–787 (2017) ArticleCASGoogle Scholar
  262. Miola, M., Gerbaldo, R., Laviano, F., Bruno, M., Vernè, E.: Multifunctional ferrimagnetic glass–ceramic for the treatment of bone tumor and associated complications. J. Mater. Sci. 52, 9192–9201 (2017) ArticleCASGoogle Scholar
  263. Verné, E., et al.: Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: leaching, bioactivity and cytocompatibility. Mater. Sci. Eng., C 53, 93–103 (2015) ArticleCASGoogle Scholar
  264. Tiberto, P., et al.: Magnetic relaxation in ferrimagnetic glass-ceramics obtained by co-precipitation at different temperatures. IEEE Trans. Magn. 43, 2471–2473 (2007) ArticleCASGoogle Scholar
  265. Bretcanu, O., Verné, E., Coisson, M., Tiberto, P., Allia, P.: Temperature effect on the magnetic properties of the coprecipitation-derived ferrimagnetic glass-ceramics. J. Magn. Magn. Mater. 300, 412–417 (2006) ArticleCASGoogle Scholar
  266. Bretcanu, O., Verné, E., Coisson, M., Tiberto, P., Allia, P.: Magnetic properties of the ferromagnetic glass-ceramics for hyperthermia. J. Magn. Magn. Mater. 305, 529–533 (2006) ArticleCASGoogle Scholar
  267. Bretcanu, O., Spriano, S., Verné, E., Coisson, M., Tiberto, P.: The influence of crystallised Fe3O4 on the magnetic properties of coprecipita-tion-derived ferrimagnetic glass-ceramics. Acta Biomater. 1, 421–429 (2005) Google Scholar
  268. Bretcanu, O., Spriano, S., Vitale-Brovarone, C., Verné, E.: Synthesis and characterization of coprecipitation-derived ferrimagnetic glass-ceramics. J. Mater. Sci. 41, 1029–1037 (2006) ArticleCASGoogle Scholar
  269. Day, D.E.: Glasses for radiotherapy. In: Jones, J.R., Clarke, G.C. (eds.) Bio-Glasses: An Introduction, pp. 203–228. Wiley (2012) Google Scholar
  270. Miguez-Pacheco, V., Hench, L.L., Boccaccini, A.R.: Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13, 1–15 (2015) ArticleCASGoogle Scholar
  271. Baino, F., Novajra, G., Miguez-pacheco, V., Boccaccini, A.R., Vitale-Brovarone, C.: Bioactive glasses: special applications outside the skeletal system. J. Non-Cryst. Solids 432, 15–30 (2016) ArticleCASGoogle Scholar
  272. Kargozar, S., Hamzehlou, S., Baino, F.: Potential of bioactive glasses for cardiac and pulmonary tissue engineering. Materials (Basel). 10, 1429 (2017) Google Scholar
  273. Gocha, A., McDonald, L.: Better bodies with biomaterials: how ceramic and glass contribute to the $110B global market for implantable bio-materials. Am. Ceram. Soc. Bull. 99, 17–31 (2020) CASGoogle Scholar

Author information

Authors and Affiliations

  1. Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico Di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy Francesco Baino, Carla Migneco, Elisa Fiume, Marta Miola, Sara Ferraris, Silvia Spriano, Monica Ferraris & Enrica Verné
  1. Francesco Baino